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A quantitative model for bacterial growth and decline

A model for microbial growth is proposed that includes lag, growth and decline
phases. The model assumes that germination, repair or lag and the death processes
are all first-order. It assumes that growth is inhibited and eventually stopped by an
accumulation of toxic metabolites or depletion of a limiting substrate from cell
growth and metabolism. Parameters for the model are computed by trial and error
using spreadsheet software. Examples of the model fitted to select growth curves are
presented. A comparison of the parameters from this model is made with those from

the Gompertz equation.

Introduction

The ability to mathematlcally describe
the growth of bacteria in microbiological
growth media or food is essential for
predicting and comparing growth char-
acteristics. A traditional approach has
been to plot the log of the bacterial
population versus time, then visually
estimate (subjectively) the lag phase
and - determine the slope of the lmear
portion of the growth phase.

More recently, a number of mathe-
matical models were proposed to de-
scribe the growth of bacteria (Labuza
et al. 1990). These were not based on
growth processes or microbial kinetics.
Zwietering et al. (1990) compared several
sigmoidal functions (including logistic,
Gompertz, Richards, Schnute and Stan-
nard) which describe bacterial growth.
They concluded that the Gompertz func-
tion was ‘statistically sufficient and easy

to use’.. Changes in the parameter
values from environmental factors were
successfully fitted by multiple regres-
sion equations and microbial growth can
be predicted for a range of conditions
(Bratchell et al. 1989, Buchanan et al.
1989, Gibson et al. 1988, Gibson and
Roberts 1989, Buchanan and Phillips
1990, Palumbo et -al. 1991). However,
the Gompertz function has several
characteristics not always -compatible
with microbial growth (Garthright 1991).
There is no period of linear exponential
growth, the -time of the maximum
growth rate is at 37% of the growth from
inoculum to stationary phase (in log-
arithms) and the end of the lag phase is
at 6-7% of the growth. The model does
not extend beyond the stationary phase.

Many researchers determined first
order parameters or growth rates for
the exponential phase of growth (Bailey
and Ollis 1986, Cooper 1991). The effect
of growth factors on the growth rate can
be described by response surface equa-
tions (Thayer et al. 1987). The model of
Ratkowsky et al. (1983) related temper-
ature to the square root of the growth



rate. McMeekin et al. (1987) extended
this model to include water activity.

Schoolfield et al. (1981) developed
biological rate models based on the
Arrhenius relationship and Broughall
et al. (1983) used them for bacterial
growth. Monod (1949) assumed the
growth rate was dependent upon the
concentration of a limiting substrate.
This relationship was used by Comby et
al. (1989) to model the inhibitory effect
of chloramphenicol on E. coli. Complex,
substrate-based models for bacterial
growth were presented by Kono (1968),
Verhoff et al. (1972) and Petrova and
‘Stepanova (1990). However, these models
are not readily applicable to bacterial
growth in media or foods because the
limiting growth factors and their re-
spective concentrations are usually not
known. In most foods, substrate concen-
trations are not the limiting factor.

The purpose of this paper is to present
a model for microbial growth based on
several assumptions about bacterial
growth and decline which can be tested
experimentally. The model does not re-
quire knowledge of substrate concen-
trations. Its applicability to food micro-
biology will be demonstrated by fitting
growth data from foodborne pathogens.

Bacterial growth model

The postulated stages in bacterial growth
and decline are illustrated schemati-
cally on Fig. 1. The transition of a bac-
terial cell from stage A to B represents
a change from a non-growing cell, e.g.

A B

spore germination, injury repair or ad-
justment to a new environment, all or a
combination of which may produce a lag
phase. This transition is postulated to
be first-order.

Ng =N e*t (1)
where ¢, time; k,, rate parameter (h™!);
Nj, number of cells in stage B; N, num-
ber of cells in stage A.

The number of active cells then in-
creases by binary division (B to C).

Ng=Ng2t/¢ )
G, generation time (h); N; number of
cells in stage C.

The generation time (G) is not con-
stant throughout the growth period. G
has an initial value (primary generation
time, k,, h) which is increased by %4 (ml
cfu!) times the accumulated sum of the
cell populations (h cfu ml-?).

G=ky,+k; Y Ng; 3)
k4, primary generation time parameter
(h); k4, sum population term (ml cfu?).

The sum is the area under the growth
curve from inoculation to ¢. The incor-
poration of the % ;-sum population term
means that cell growth will be inhibited
and eventually stopped as the popu-
lation size increases. This is consistent
with a depletion of limiting substrates
or the accumulation of toxic metabolites
(Bailey and Ollis 1986). As time in-
creases, G increases making ¢/G tend
toward zero and thereby leading to the
stationary phase. The death of the cells
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Fig. 1. Bacterial growth model.



(stages. C to D) is assumed to be first-
order (k,, h™!), i.e. a constant fraction of
cells die in a given time.

ND = Ncek,;t (4)

k,, decline parameter; Np, number of
cells in stage D.

Viable counts at any time are the sum
of the number of cells in stages A and C;
stage B is a transition state and is in-
distinguishable from C. Assembling the
model’s stages gives this expression for
changes in cell population ml-* with in-
creasing time from ¢, to ¢;.

ch = [klNAz(tj_tl) +

(1=t — )N 2G99

(5)

A numerical solution to combined equa-
tions 3 and 5 were approximated by
stepwise spreadsheet algorithms (Ap-
pendix). The inoculum and estimates of
the four parameters were entered in the
entry cells and the spreadsheet calcu-
lated values for each increasing time
interval. A graph of the calculated vi-

able count with time was superimposed
upon the spreadsheet. Plate counts from
a growth experiment were also dis-
played on the graph. New parameter
estimates were then entered and the
calculated curve compared to the plate
counts. Additional parameter estimates
were tried until a satisfactory fit was
obtained. Because of the accumulated
growth term, the spreadsheet used ac-
tual bacteria counts in the calculations
instead of the log of the counts. Values
obtained for the parameters can vary
depending on the time interval chosen,
20 to 50 time intervals between inocu-
lation and the onset of the stationary
phase are recommended.

Bacterial growth curve parameters from
experimental data

Two separate inoculations of spores of
Clostridium botulinum 62A (FDA) were
grown in BAM broths at 35°C and
enumerated inside an anaerobic cham-
ber on BAM agar plates using a Spiral
Systems automated plater (Call et al.
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Fig. 2. Growth of Clostridium botulinum in BAM media at 35°C. 0 and ¢ are populations
determined by plate counts for inoculation I and II, respectively. The solid lines are the

growth curves computed from the parameters.



1991). The model was able to accurately
describe the growth rate data (Fig. 2).
Inoculation ‘I germinated and grew
sooner and had a larger value for &,
value than inoculum II. The times for
the populations in inoculation I and II to
double were 3 and 6 h, respectively. The
values for k, were similar, but curve I
had a lower value for k3 due to a higher
maximum population size. Declines began
immediately after the maximum and
were approximated by a first-order pro-
cess. - o

The - seventeen growth curves of
Listeria monocytogenes in broth without
nitrite from the data of Buchanan et
al. (1989) were used. These data were
measured at various temperatures, pH
and NaCl levels. No plate counts were
obtained after the maximum growth,
therefore in this analysis, k, was fixed

-at 0-0 h1. The primary generation times

determined by this model (k,) and the
generation times using -the Gompertz
function are compared (Table 1). The
two generation times varied similarly
over the ranges of the growth factors al-
though this model predicted a primary
generation time that averaged 16%
longer than the generation time deter-
mined by the Gompertz function. This
model did not calculate a traditional lag
time in hours, but a half-life for the
transition is given by 0-69/k ;. A small 2,
may not necessarily result in a long ap-
parent lag time if the micro-organisms
grow rapidly because nearly all of the
population descends from the first cells
that make the A to B transition. Values
comparable to the traditional lag times
may be obtained by noting the time in
the spreadsheet (Appendix) that it takes

Table 1. Comparison of k, and Gompertz derived generation times for growth of
L. monocytogenes grown under various temperatures, pH values and NaCl levels.

ky(h)
Temperature (°C)
37 28 19 10 5

‘ % NaCl
pH 05 25 4.5 05 45 05 45 0-5 05 45
7-5 0-60 0-65 0-75 075 1.1 1.7 5.6 12
6-75 1.05
6-0 0-55 1.05 3.05 16 24
5.25 1.15
4-5 5.5 18.0

Gompertz generation time (h)
Temperature (°C)
37 28 19 10 - 5
% NaCl

pH 05 25 45 05 4.5 05 45 0-5 05 4.5
7-5 0-55 0-49 0-50 0-58 0-87 “1.12 5.3 13.3
6-75 0-83
6-0 0-50 0-80 2.6 139 224
5.25 0-89
4.5 4.4

19-0




for the population to double initially.
The initial doubling times (Table 2)
were slightly smaller than the lag times
determined using the Gompertz func-
tion which calculated the lag time as
ending after 2.6 generations assuming 6
logs of growth (Garthright 1991). & ; was
nearly constant over the ranges of both
factors, increasingly only at pH 4.5 or
5°C (Table 3). .
Second-order equations were calcu-
lated to describe the effect of the growth
factors on the constants by backwards
multiple regression (RS/1, BBN Soft-
ware Prod. Corp., Cambridge, MA):

logk,=
-16-20 + 0-1200 (temp) +
4-160(pH) — 0-01291 (pH)
(NaCl) — 0-002234 (temp)? —
10-3121 (pH)2 + 0-0112 (NaCl)?
r?=0-82

(6)

log k‘g =
12.677 — 0-1092 (temp) —
3-4447 (pH) + 0-3657 (NaCl) —
0-04464 (temp) (NaCl) +
10-001571 (temp)? +
0-2636 (pH)?
r? =0.96

logk, =
7-43 —4.92 (pH) +
0-357 (NaCl) — 0-0109 (temp)
(NaCl) + 0-350 (pH)?
r?=0-84

(7

(8)

Growth [ survival curve parameters

Listeria monocytogenes was grown in
BHI broths' (28°C) having different
water activities (a,,) from the addition of
NaCl (Miller 1992). The growth slowed
as the a, decreased and no growth
occurred at and below a, of 0-90. To
describe these data, the model was

Table 2. Initial doubling times and Gompertz lag times for L. monocytogenes
grown under various temperatures, pH values and NaCl levels.

Initial doubling times (h)

Temperature (°C)

37 28 19 10 5
| %NaCl ’
pH 05 25 45 05 45 05 45 0.5 05 45
7.5 21 29 39 20 42 46 13 48
675 25 :
6.0 22 30 86 47 78
5.25 4.3
45 27 63
. Gompertz lag time (h)
Teniperature °C)
37 28 - 19 10 5
% NaCl

pH 05 25 4.5 05 45 05 45 05 05 45
7.5 17 34 44 32 51 9.7 15.0 577
675 ' 3.9
6.0 2.4 57 104 478 753
525 7.4
45 29.4 68-0
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Table 3. Log k3 values for L. monocytogenes grown under various temperatures,

pH values and NaCl levels.
Temperature (°C)
37 28 19 10 5

% NaCl
pH 05 25 45 05 45 05 45 0-5 05 4.5
7-5 -9.7 -9.-5 -9.7 —10-0 —10-0 —9.8 —-9:5 —10-0
6-75 —9.5
6.0 —-9.6 -93 -93 -93 -7.7
5-25 -9.0
4.5 -7.0 —80

modified by assuming the first-order
decline parameter (k,) applied to both
the inoculum and the growing cells (A
and C, Fig. 1). The equation placed in
spreadsheet column C (row 9 illustrated)
became ((C8*(1-$D$5*(A9—-A8)))~($G$5*
C8%(A9-A8))). This modification permit-
ted better fitting of 2, and &, to the de-
clining data (a,, < 0-90) than the original
model, where stage A cells must convert
to B and then C before dying. In the
range of a, from 0-99 to 0-93, &, de-
creased and k, increased; k; and k,
were only slightly affected (Table 4). As
a,, decreased below 0-90, &, and %, in-
creased. At these a,, the importance of
the numerical value and the physiologi-
cal significance of the changes in %, and
k, are less clear because death cell pre-
dominates. The experimental data and
the fitted models are shown in (Fig. 3).

The generation times for the a,
values that permitted growth were
determined with this model, manual
plotting and the Gompertz function. The
primary generation times by this model
(k,) were able to compare to the other
two methods, the Gompertz function
gave slightly shorter generation times.

Discussion

The postulated first-order kinetics for
the A to B transition were rationalized
by assuming that repair or lag time
rates were limited by one step of a com-
plex enzymatic process. The data from
Foegeding and Busta (1983) indicated
that spore germination was a first-order
process. Another process could be postu-
lated, however, sufficient data are not
usually collected during the lag phase to
permit fitting a more complex function.

Table 4. Constants for L. monocytogenes growth in BHI broth with varying a,.

Water kq ky k

Generation time (h)
k

3 4
Activity (h™) (h) (logmlcfu=?) (™) Plot Gompertz
0-99 0-063 0-75 —-9.6 0-010 0-69 0-69
0.97 0-0063 1.0 —-9.3 0-0050 110 0-86
0-93 0-00063 2.7 -9.3 0-020 3-20 2.55
0-90 0-050 7-5 —4.0 0-025
0-87 0-10 7-0 —4.1 0-036
0-83 0-10 6-0 —4.3 0-045
0-80 0-13 5.0 —4.6 0-12
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Fig. 3. Growth and decline of L. monocytogenes in BHI with varying a . Symbols represent
plate count values and the lines are generated by the model using the parameter values on

Table 4.

In general, short lag phases had k,
values of approximately 0-1 h~*; long lag
phases had %, values of 0-001 h~*.

The primary generation time (k,) was
comparable to the generation time ob-
tained when data are plotted or fitted
using the Gompertz function. Growth
proceeded at this rate only in the begin-
ning, the k3 sum growth-time term im-
mediately began to reduce the overall
rate of growth. However, this limiting of
growth was not usually noticeable until
the negative log of the cell numbers (cfu
ml-1) approached the log value of kj,
typically —6 to —9. Therefore, this model
has an essentially linear growth phase
(log cfu ml™!) in contrast to the continu-
ously curving Gompertz function which
may be too steep at the inflection point
when the overall best fit is calculated.
Values for %k, were less dependent on
growth parameters such as temperature
or pH than the first two parameters, but
presumably were related to other limit-
ing factors in the medium.

The first-order decline parameter, &,

ranged from 0-0 h™* to 0-3 h™'. With
curves exhibiting high death rates, this
term began to exert an effect during the
growth phase decreasing the apparent
rate of population increase and maxi-
mum population. The inactivation of
micro-organisms in water, soil and
ground water was described as a first-
order process (Gerba et al. 1991, Harvey
1991, Kundsen 1991).

Conclusion

This model accurately described the
shape of microbial growth curves. Its
four parameters model different por-
tions of the curve and permit quanti-
tative comparisons of different growth
conditions. Changes in the parameters
may be described by multiple regression
equations. The parameter changes could
also be described by other relationships
such as the Arrhenius or square root
functions for different temperatures.
The assumptions in this model invite
experimental verification and subse-
quent modification.
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Appendix
Lotus spreadsheet
A B C D E F G H
1 file RCWMODA.WK1 BACTERIAL GROWTH MODEL STD FORM RCW-MCP
2
3 log inoc log k1 lag k2 GT log k3 log k4 time interv
4 DATAENTRY >> 4 -1 0-75 -9 -1.5 1
5 10000 0-1 1-00E-09 0-031622
6
7 TIMEDATA A POPULATION GROW K SUM GROWTHLOG CFU/ML
8 0 4 10000-00 0 0-75 0 4.00
9 1 9048-37  2519-8420 0-75  2519-8420 406 Tlag 1/2
10 2 8187-31  8428.8595 0-7500025  10948.701 4.22 69
11 3 7408-18  22630-748 0-7500109  33579-449 4.48
12 4 6703.20 57088569 0-7500335  90668-019 4.80
13 5 5.2 6065-31  140988.37 0.7500906  231656-39 5.17
14 6 5488.12  345523.63 0-7502316  577180-03 5.55 Tdeath 1/2
15 7 4965.85  844274.11 0-7505771  1421454-1 5.93 21.8
16 8 4493.29  2059948.7 0-7514214 34814029 6-31
17 9 4065.70 5018949-8 0-7534814  8500352-8 6-70
18 10 7.1 3678.79 12195863 0-7585003 20696216 7-09
19 11 3328-71 29454108 0-7706962 50150325 7-47
20 12 3011.94 70111683 0-8001503 120262008 7-85
Spreadsheet commands
cell entry column entry
C4 log inoculum A (A8+$h$4)
D4 log k1 B data
E4 k2 generation time C ($C$8*@EXP(-$D$5*(A9-A8))
F4 log k3 D (($D$5*C8*(A9-A8)) + (1-$G$5*(A9-A8))*D8)
*2/((A9-A8)/E8)
G4 log k4 E ($E$4+($F$5*F8*(A9-A8)))
H4 iteration time F  (D9*(A9-A8))+F8
C5 10~C4 G @LOG(C9+D9)
D5 10~D4
F5 10~D4

G5 10"G4



